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Motivations and general features of the model

General motivation

• Confinement: a long-standing problem in elementary particle
Physics

• Strong interactions: SU(3) color gauge symmetry...

• ...but in the currently observed physical spectrum: colorless
states only

• Precise theoretical explanation is still missing...

• ...although several possible mechanisms/effective theories have
been suggested

• Numerical studies on the lattice may refute or confirm their
predictions

• A (“meson-like”) QQ̄ system: the simplest confined system

• It is possible that different gauge theories share the same
(qualitative) mechanism for confinement

• Compact U(1) lattice gauge theory in 4D has a confined phase,
analogous to non-Abelian gauge theories
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Motivations and general features of the model

Compact U(1) lattice gauge theory in 4D

• A simple example of a confining gauge theory

• A pure gauge theory; Uµ(x) ∈ U(1) variables defined on the
oriented bonds of a hypercubic lattice

• Wilson Action: S = β
∑

p(1 − ReUp)

• S = S({Up}) −→ invariance w.r.t. local (site) U(1) gauge
transformations

• Two different regimes:

1. 0 < β < βc = 1.0111331(21)∗ confined phase

2. β > βc deconfined (“Coulomb-like”) phase

�

�

�

�3

∗G. Arnold, B. Bunk, Th. Lippert, K. Schilling, hep-lat/0210010



The method

Exploiting the duality properties of the theory

This theory enjoys a duality property:

• a group Fourier transform allows to map the partition function
and observable VEV’s to a dual formulation∗

• whose fundamental degrees of freedom take values in Z.

• In 4D, the dual model is again a gauge model

• with an interaction of “ferromagnetic” nature:

Z = (2π)4N
∏ ∑

?l

e−βI|d?l|(β)

?l = ?lµ(x) ∈ Z −→ a 1-form defined on dual lattice links

d?l −→ discretized exterior derivative of ?l (a 2-form associated
with dual lattice plaquettes)

An exact, analytical mapping that allows to get results for the U(1)
theory from simulations of the dual, “integer-valued” model
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∗See also M. Zach, M. Faber, P. Skala, hep-lat/9705019



The method

The QQ̄ system mapped to the dual model

The QQ̄ pair (Polyakov loops in the original model) is mapped to a
stack of topological defects (?n) in the dual lattice:

ZQQ̄ = (2π)4N
∏ ∑

?l

e−βI|d?l+?n|(β)
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The method

Advantages and limits: a comparison with other methods

Features:

• S/N ratio exponential decay problem is overcome

• computational advantages from integer-valued variables

• the method can be used for different gauge theories∗ — with
further practical advantages in 3D

• it was already used in studies of Z2 LGT in 3D†

• a possible alternative to the multi-level algorithm‡, which has
proved to induce exponential error reduction in several gauge
theories§

• including compact U(1) LGT in 4D¶

• unfortunately, the duality technique is not available for physi-
cally more interesting groups like SU(N)
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Focus onto the observables

Flux-tube profile

• Dual superconductor picture:

LDLG = −
1

4
F 2 + |Dχ|2 − λ(|χ|2 − v2)2

• Classically, at large enough distance from the Dirac string
sheet:

Ex(r) ∝ m2K0 (mr)

• String quantum fluctuations can be included∗: they induce
logarithmic growth of flux tube width†

• From the complete Ex profile: check of rotational invariance
— lattice artifacts?

• Role of finite lattice size effects?

• Scaling of dimensionless quantities at different values of β
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∗M. Zach, M. Faber, W. Kainz, P. Skala, hep-lat/9508017
†M. Caselle, F. Gliozzi, U. Magnea, S. Vinti, hep-lat/9510019 for Z2 in 3D



Focus onto the observables

Polyakov loop correlator

• The bosonic string scenario predicts∗:

〈P †(R)P(0)〉 =
e−σRL+k

[

η
(

i L
2R

)]D−2

η being the Dedekind function:

η(τ) = q
1

24

+∞
∏

n=1

(1 − qn) ; q = e2πiτ

• Correspondingly, the confining potential reads†:

V (R) = −
1

L
ln〈P †(R)P(0)〉 ' σR −

π(D − 2)

24R
+ . . .

• Inclusion of a possible “boundary term contribution” in the
effective action yields:

V (R) ' σR −
π(D − 2)

24R

(

1 +
b

R

)

+ . . .

• Open questions . . .
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∗M. Minami, 1978
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†M. Lüscher, K. Symanzik, P. Weisz, 1980



Results and plots

Numerical results for the flux-tube profile: an example
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Ex profile in the (y, z) mid-plane between the charges
(164 lattice, β = 0.96, dQQ̄ = 3a)
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Ex as a function of ρ =
√

y2 + z2
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Results and plots

Discussion

• Check of rotational invariance

• Comparing with results from lattices of different volume: finite
size effects are under control

• Behaviour as β → βc: the sharply peaked distribution gets
flatter and flatter

• Behaviour as dQQ̄ increases: the peak height decreases, width
gets broader

• Possible fit of the expected behaviour at large enough ρ
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Results and plots

A look at the interquark potential and force
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Sommer’s scale∗ is introduced (r0 ' 2.3a at β = 0.98).
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The fit yields: σa2 = 0.289(3), with χ2
red = 1.4.
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Results and plots

Discussion

• The algorithm proves to be particularly efficient to study the
interquark force, especially at large distances

• Well-defined scaling behaviour as β is changed

• In agreement with other results published in literature, the
effective string scenario is confirmed at large distances . . .

• . . . whereas at short distances the picture breakdown seems
not to be completely cured by including a boundary term

• A possible effective pattern at short distances appears to be
non universal, i.e. dependent on the gauge theory
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Conclusions and perspectives

Summary

• We have simulated compact U(1) lattice gauge theory in 4D

• Duality allows to use a highly efficient algorithm

• The electric field profile induced by two static charges was
observed

• Interquark potential and force were studied

Agenda

• Increasing statistics

• Larger lattice runs

• Further investigations about the confining potential
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